

BING-NEEL SYNDROME

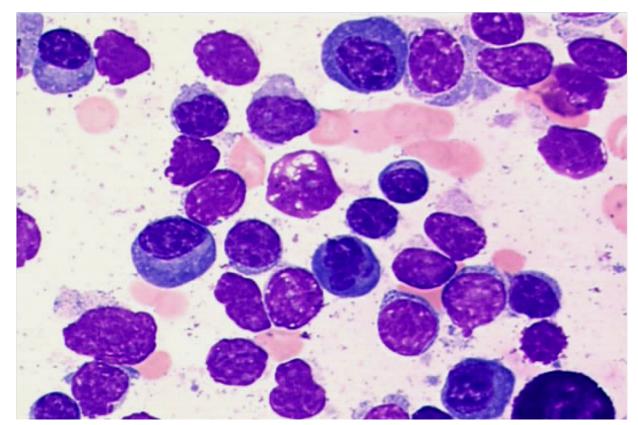
Jorge J. Castillo, MD Associate Professor of Medicine Harvard Medical School JorgeJ_Castillo@dfci.harvard.edu



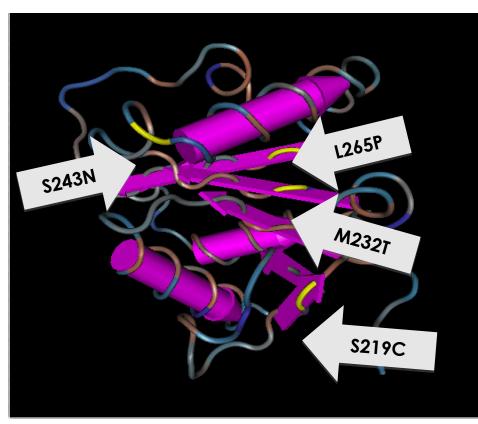
Disclosures

Company	Research support	Employee	Consultant	Stockholder	Speaker's Bureau	Scientific Advisory Board
AbbVie	Х		Х			Х
AstraZeneca	Х					
BeiGene	Х		Х			Х
Casma Therapeutics			Х			
Cellectar			Х			
Janssen	Х		Х			
Pharmacyclics	Х		Х			Х
Roche			Х			
TG Therapeutics	Х					

- 73M with diagnosis of Waldenström macroglobulinemia (WM) in 2007 and treated with R-CVP in 2010 developed bilateral leg weakness while on therapy.
- Spinal MRI showed leptomeningeal enhancement of the cauda equina.
- CSF examination showed the presence of clonal lymphoplasmacytic cells, CD20+, CD5-, CD10-.
- A diagnosis of Bing-Neel syndrome (BNS) was made


Objectives

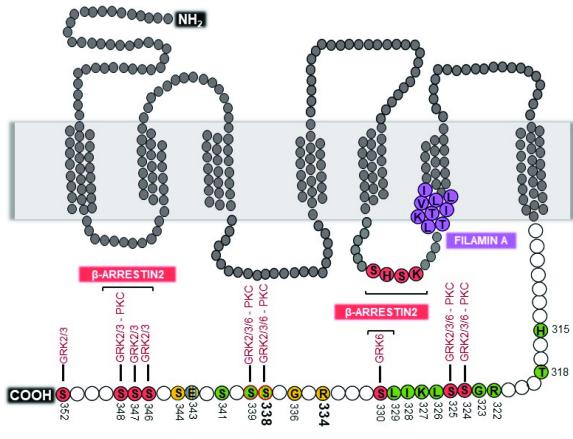
- When to suspect BNS
- How to diagnose BNS
- How to treat BNS
- How to counsel BNS patients


Diagnostic criteria

- IgM monoclonal protein in serum protein electrophoresis and immunofixation
- 2. Lymphoplasmacyticlymphoma in the bone marrow
- *3. MYD88 L265P* mutation by AS-PCR or NGS

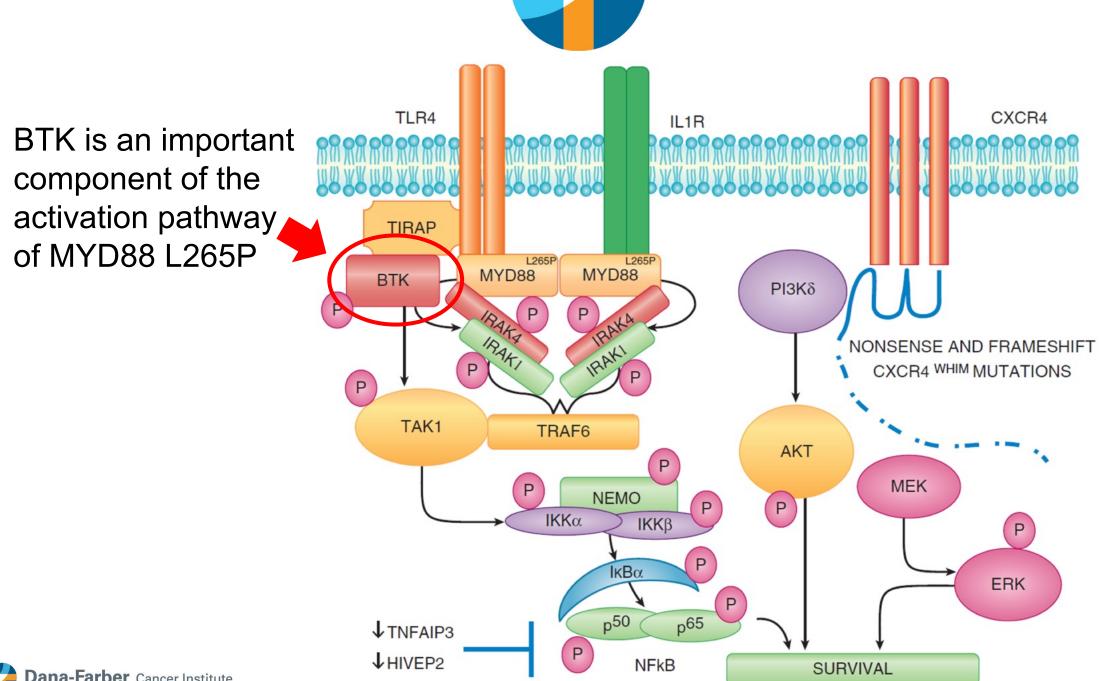
Alaggio et al. Leukemia 2022; ASH Image Bank 2022

MYD88 mutations

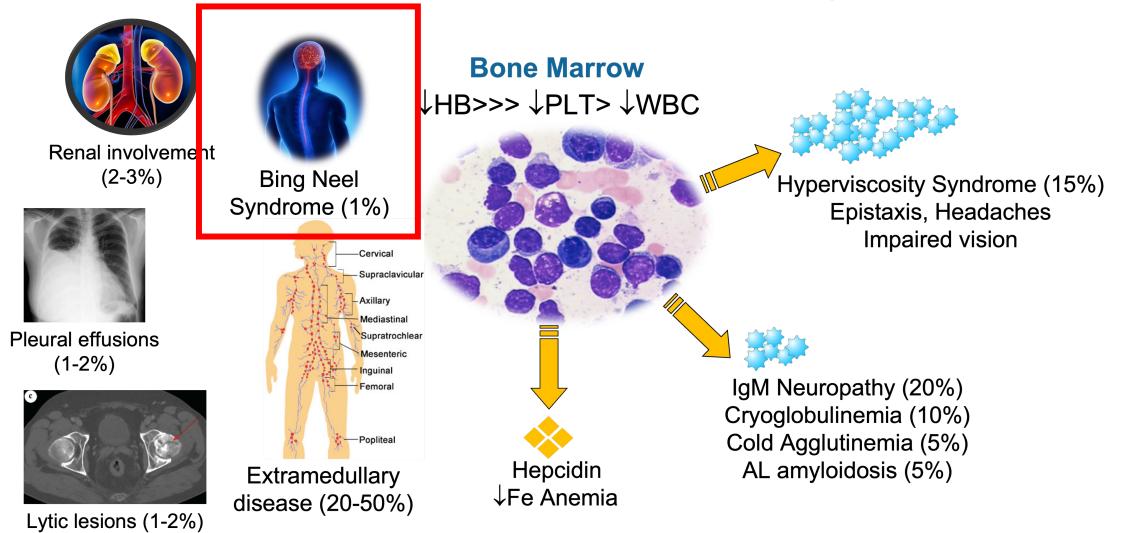


Treon et al. N Engl J Med 2012 Xu et al. Blood 2013

Study		Method	%
Xu		AS-PCR	93%
Poulain		PCR	80%
Varettoni		AS-PCR	100%
Landgren		Sanger	90%
Jimenez	- (AS-PCR	86%
Argentou		PCR-RFLP	92%
Willenbacher		Sanger	86%
Mori		AS-PCR	80%
Ansell		WES/AS-PCR	97%
Patkar	۲	AS-PCR	85%
Cao	*]	AS-PCR	92%
Giuliani	0	AS-PCR	95%
Riva		AS-PCR	89%



CXCR4 mutations


Study		Method	%
Hunter		WGS	27%
Roccaro		AS-PCR	28%
Poulain		NGS/Sanger	25%
Schmidt		Sanger	36%
Xu		AS-PCR/Sanger	40%
Ballester		Sanger	25%
Cao	*1	Sanger	24%
Shin		Target capture	19%

Milanesi et al. Int J Mol Sci 2020

Manifestations of Waldenström Macroglobulinemia

Adapted from Derman et al. ASCO Ed Book 2022 9

Limitations

- No prospective studies
- Few retrospective case series
- Several case reports (anecdotes)

When to suspect BNS

Central nervous system involvement by Waldenström macroglobulinaemia (Bing-Neel syndrome): a multi-institutional retrospective study

12/34 (35%)

12/34 (35%)

10/34 (29%)

4/34 (12%)

4/34 (12%)

4/34 (12%)

4/34 (12%)

2/34 (6%)

Castillo et al. Br J Haematol 2016

Bing-Neel syndrome, a rare complication of Waldenström macroglobulinemia: analysis of 44 cases and review of the literature. A study on behalf of the French Innovative Leukemia Organization (FILO).

Balance disorder/disturbed gait	48%
Cranial nerve involvement	36%
Cognitive impairment	27%
Paresthesia/dysesthesia	25%
Headache	18%
Limb pain	18%
Cauda equina syndrome	14%
Simon et al. Haematologica 2	2015

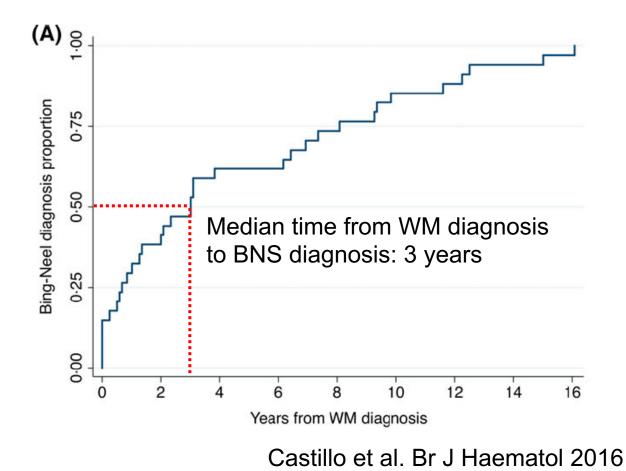
Symptoms at BNS diagnosis

Limb motor deficits

Altered mental status

Cranial nerve symptoms

Peripheral neuropathy


Headaches

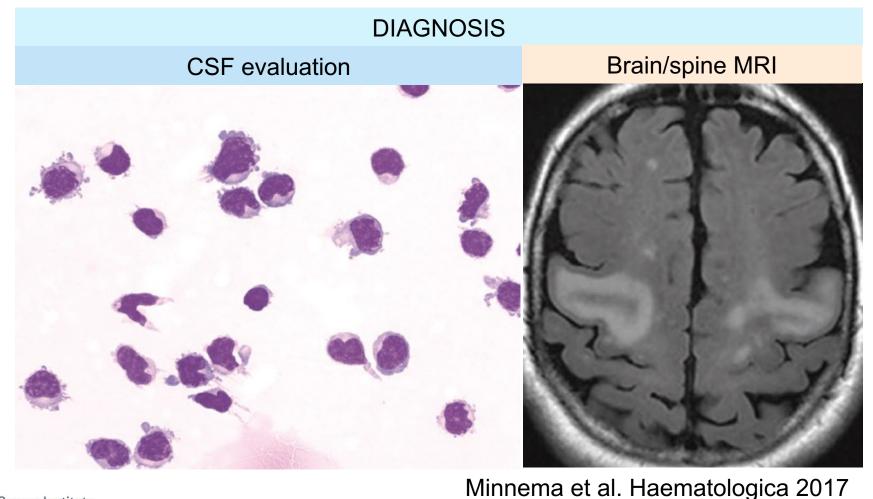
Limb pain

Unsteady gait

Seizures

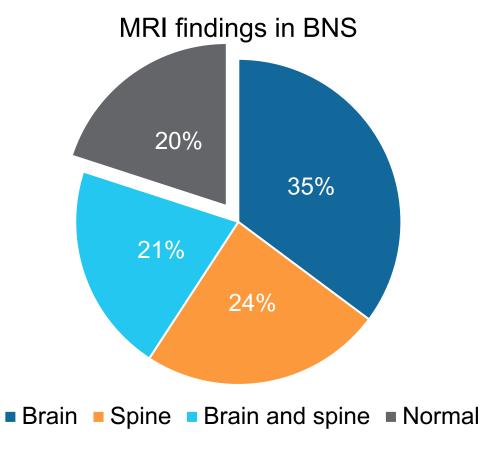
Central nervous system involvement by Waldenström macroglobulinaemia (Bing-Neel syndrome): a multi-institutional retrospective study

Settings for BNS diagnosis:


- At WM diagnosis
- In untreated patients
- While responding to therapy
- As a late relapse

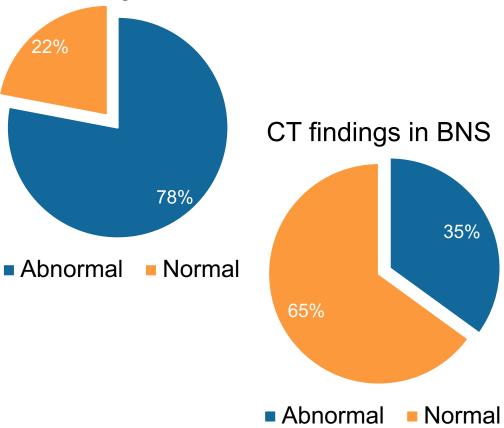
How to diagnose BNS

Guideline for the diagnosis, treatment and response criteria for Bing-Neel syndrome


CSF analyses

- Cytology beware of atypical lymphocytes
- Flow cytometry
- PCR for IgH gene rearrangement
- PCR for MYD88 L265P

Should match systemic disease


Central nervous system involvement by Waldenström macroglobulinaemia (Bing-Neel syndrome): a multi-institutional retrospective study

Dana-Farber Cancer Institute

Bing-Neel syndrome, a rare complication of Waldenström macroglobulinemia: analysis of 44 cases and review of the literature. A study on behalf of the French Innovative Leukemia Organization (FILO).

MRI findings in BNS

Definitive vs. probable BNS diagnosis

Definitive Diagnosis

- Presence of clonal B-cells in CSF or tissue biopsy with similar profile than systemic disease
- With or without leptomeningeal enhancement or masses in MRI

Probable Diagnosis

- Abnormal MRI findings
- Without evidence of clonal Bcells in CSF or tissue biopsy

How to treat BNS

Bing-Neel syndrome, a rare complication of Waldenström macroglobulinemia: analysis of 44 cases and review of the literature. A study on behalf of the French Innovative Leukemia Organization (FILO).

First-line treatments	
Cytarabine or methotrexate-based high-dose regimens	52% (23/44)
Rituximab (alone or in combination)	45% (20/44)
Fludarabine-based regimens	14% (6/44)
Intrathecal chemotherapy (alone or in combination)	73% (32/44)
Autologous stem-cell transplantation	14% (6/44)
Radiotherapy	14% (6/44)
Response rates	
Overall response rate	70% (31/44)
Complete response/Uncertain complete response	29% (13/44)
Partial response	41% (18/44)
Stable or progressive disease	30% (13/44)

Simon et al. Haematologica 2015

Central nervous system involvement by Waldenström macroglobulinaemia (Bing-Neel syndrome): a multi-institutional retrospective study

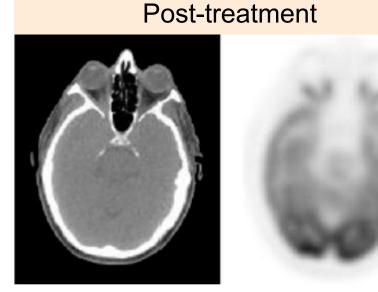
Therapies	N (%)	CR (%)	PR (%)	NR (%)
First line $(n = 32)$				
HDMTX-based	13 (41)	2 (15)	6 (46)	5 (38)
Intrathecal-based	6 (19)	1 (17)	2 (33)	3 (50)
HDMTX+HIDAC-based	5 (16)	4 (80)		1 (20)
Fludarabine-based	3 (9)	1 (33)	2 (67)	
Bendamustine-based	2 (6)		2 (100)	
Other regimens*	3 (9)	1 (33)		2 (67)
_	Ca	stillo et al. I	Br J Haema	atol 2016

Chemotherapy

Effective treatment of Bing-Neel Syndrome with oral fludarabine: a case series of four consecutive patients Vos et al. Br J Haematol 2016

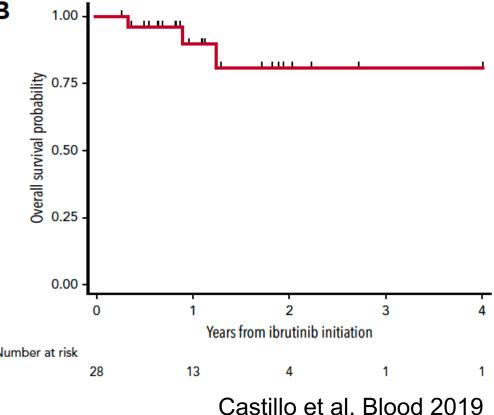
Successful treatment with Rituximab and Bendamustine in a patient with newly diagnosed Waldenström's Macroglobulinemia complicated by Bing-Neel syndrome

Varettoni et al. Am J Hematol 2015

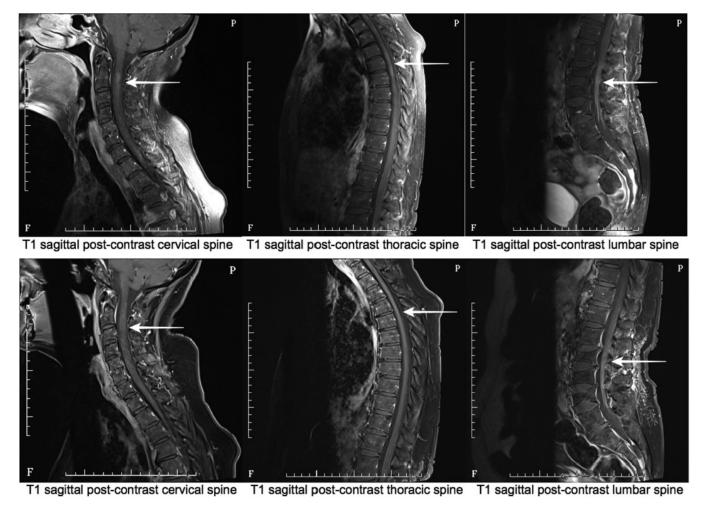


Ibrutinib penetrates the blood brain barrier and shows efficacy in the therapy of Bing Neel syndrome

Pre-treatment

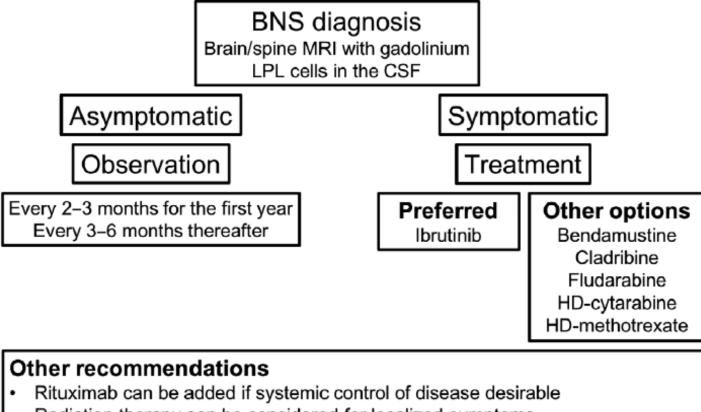

		Ibrutinib (nM)			
Study Day	Time post-dose (h)	CSF	Plasma	%CSF/Plasma	
Day 1	0	BLQ	BLQ	NA	
	2	34	1133	3.0	
1 Month	3	16	463	3.5	
4 Months	2.5	7	318	2.2	

Mason et al. Br J Haematol 2017



Ibrutinib for the treatment of Bing-Neel syndrome: a multicenter study

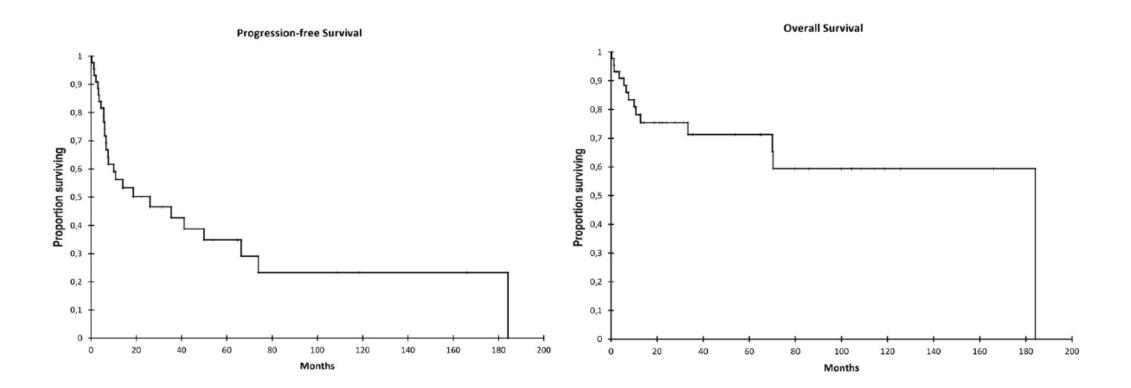
	n/N (%)				B 1.00 -
	3 mo	6 mo	12 mo	Best response	£ 0.75 -
Symptomatic					Overall survival probability 0.20 - 0.20 - 0.22 -
Resolved	1/26 (4)	3/20 (15)	2/10 (20)	5/28 (18)	al pro
Improved	21/26 (81)	15/20 (75)	7/10 (70)	19/28 (68)	.≥ 0.50 - ≥
Unchanged	4/26 (15)	2/20 (10)	1/10 (10)	4/28 (14)	erall s
Radiologic					<u>ල</u> ී 0.25 -
Resolved	0/15 (0)	1/9 (11)	2/8 (25)	2/18 (11)	
Improved	9/15 (60)	7/9 (78)	6/8 (75)	13/18 (72)	0.00 -
Unchanged	6/15 (40)	1/9 (11)	0/8 (0)	3/18 (17)	0
Cytologic					Number at risk
Cleared	7/12 (58)	2/7 (29)	0/1 (0)	8/17 (47)	28
Persistent	5/12 (42)	5/7 (71)	1/1 (100)	9/17 (53)	

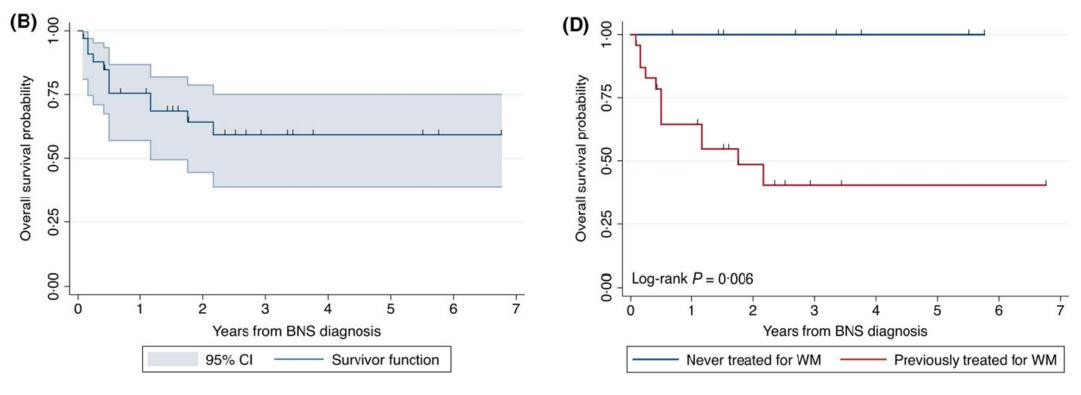

Efficacy of Zanubrutinib in the Treatment of Bing-Neel Syndrome

Wong et al. Hemasphere 2018

How we manage Bing-Neel syndrome

- Radiation therapy can be considered for localized symptoms
- Intrathecal therapy can be considered if leptomeningeal disease only and not candidates for systemic therapy




How to counsel patients with BNS

Bing-Neel syndrome, a rare complication of Waldenström macroglobulinemia: analysis of 44 cases and review of the literature. A study on behalf of the French Innovative Leukemia Organization (FILO).

Central nervous system involvement by Waldenström macroglobulinaemia (Bing-Neel syndrome): a multi-institutional retrospective study

Castillo et al. Br J Haematol 2016

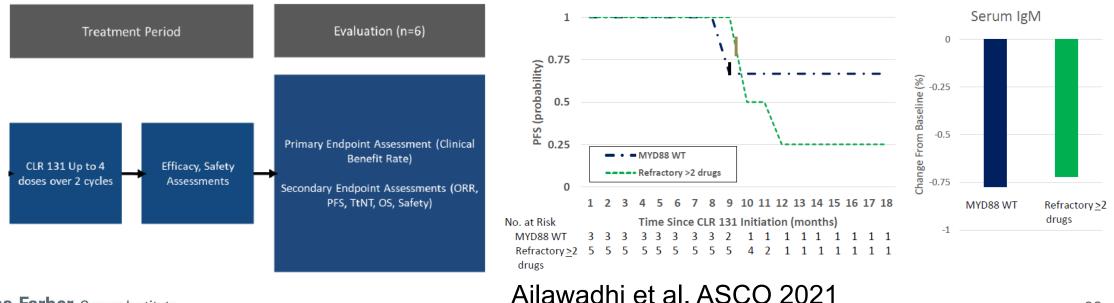
Novel treatment strategies

New agents

Venetoclax penetrates in cerebrospinal fluid and may be effective in chronic lymphocytic leukemia with central nervous system involvement.

Reda et al. Haematologica 2019

Marizomib for central nervous system-multiple myeloma


Badros et al. Br J Haematol 2017

Study of lopofosine 131 (CLR-131) in Waldenström macroglobulinemia (CLOVER-WaM)

- Multicenter study
- 2+ lines of therapy (n=50)
- Only prospective study including BNS

www.clinicaltrials.gov: NCT02952508

Dana-Farber Cancer Institute

32

- BNS is a rare complication in patients with WM.
- It can occur at any time during the disease course.
- Diagnosis: CSF evaluation and neuroimaging (MRI)
- Treatment: BTK inhibitors (preferred), chemotherapy
- BCL2 inhibitors and iopofosine 131 are potential future treatment options

BING-NEEL SYNDROME

Jorge J. Castillo, MD Associate Professor of Medicine Harvard Medical School JorgeJ_Castillo@dfci.harvard.edu

